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Abstract

The complete mean field Green function solution of the effective two-dimensional two-
band Hubbard model of the high-Tc superconductivity in cuprates [N.M. Plakida et al.,
Phys. Rev. B, 51, 16599 (1995)] has been obtained. It unveils three important features of this
model. (i) While the conjecture of the spin-charge separation in cuprates, repeatedly stressed
by P.W. Anderson, is at variance with the existence of the Fermi surface in these compounds,
the main findings of the present investigation point towards its actual occurrence and to an
alternative explanation. (ii) The two-band Hubbard model recovers the superconducting
state as a result of the minimization of the kinetic energy of the system, in agreement with
ARPES and optical data. (iii) The anomalous pairing correlations may be consistently
reformulated in terms of localized Cooper pairs both for hole-doped and electron-doped
cuprates.

1. Introduction
The two-band Hubbard model of high-Tc superconductivity [1] emerged as a simplification of the
more comprehensive p-d model [2], using a reduction procedure based on cell-cluster perturbation
theory [3], consistent with the basic features evidenced by the study of the high-Tc cuprates (see,
e.g., [4] for a review): (i) the occurrence of the Fermi surface in cuprates is a firmly established
experimental fact; (ii) the cuprates are, in fact, charge-transfer insulators which are characterized
by a strong antiferromagnetic interaction inside the CuO2 planes, while showing different band
splittings in comparison with the Mott-Hubbard insulators; (iii) the nearest to the Fermi level
stay the upper Hubbard band (single particle copper dx2−y2 states) and the singlet subband
(doubly occupied states in the direct space, generated by a specific hierarchy of the ion-ion
interactions); (iv) the cuprates exhibit hopping conduction, with an extremely low density of
the free charge carriers.

Using the equation of motion method for thermodynamic Green functions (GF) [5], the
effective two-band Hubbard model was shown [6] to generate both the exchange and the spin
fluctuation mechanisms currently assumed to result in superconducting pairing in cuprates and
to be able [7] to produce electronic spectra of the normal state in agreement with ARPES data.

Here we summarize the results of two recent studies of the generalized mean field approxi-
mation (GMFA) solution of the Green function of the effective two-band Hubbard model [8, 9].
Based on the rigorous implementation of consequences following both from the system symme-
tries (the invariance to translations, point symmetry, and spin reversal) and from the Hubbard
operator algebra, the existence of invariance properties of several statistical averages, as well as
the exact vanishing of other ones, have been found [8]. These results have been shown [9] to
shed new light on the spin-charge separation conjectured by P.W. Anderson [10].

The spin-charge correlation functions associated to normal hopping processes are found to
vanish identically, while the GMFA pairing shows a unique correlation function relating the
singlet destruction/creation processes with the surrounding charge density. This charge-charge
pairing mechanism is shown to be equivalent to the occurrence of doping related correlations
of Cooper pairs which are localized inside the hopping radius around the singlet destruc-
tion/creation event. Therefore, a kinetic energy minimization process is responsible for the
occurrence of the superconducting phase inside the model, in agreement with ARPES [4] and
optical [11] data.

2. Model Hamiltonian
Significant simplification of the algebraic calculations asked by the derivation of the GMFA-GF
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solution was obtained [8] through the definition of the Hubbard 1-forms of labels (αβ, γη),

ταβ,γη
1,i =

∑
m�=i

νimXαβ
i Xγη

m . (1)

This expression carries, at the site i, the overall effect of the hopping processes described by
the pair of Hubbard operators (Xαβ

i ,Xγη
m ) at the lattice sites (i,m) related by non-vanishing

hopping parameters νim.
Using (1), the Hamiltonian of the effective two-band Hubbard model [1] was rewritten in the

form [8]

H = E1

∑
i,σ

Xσσ
i +E2

∑
i

X22
i +K11

∑
i,σ

τσ0,0σ
1,i +

+ K22

∑
i,σ

τ2σ,σ2
1,i +K21

∑
i,σ

2σ(τ2σ̄,0σ
1,i +τσ0,σ̄2

1,i ). (2)

The Hubbard operator (HO) algebra is very intricate, involving both anticommutation and
commutation relations, as well as specific properties at a given lattice site i.

3. Mean field approximation
We define [12] the four component σ-Nambu operator,

X̂iσ = (Xσ2
i X0σ̄

i X2σ̄
i Xσ0

i )� (3)

where the superscript � denotes the transposition. Then X̂†
jσ = (X2σ

j X σ̄0
j X σ̄2

j X0σ
j ) denotes

the adjoint operator of X̂jσ. The set of all the sixteen correlation functions of the pairs of
Hubbard operators emerging from X̂iσ(t) and X̂†

jσ(t′) can be written in terms of the retarded
and advanced 4 × 4 GF matrices (in Zubarev notation [5])

G̃r
ijσ(t − t′) = −iθ(t − t′)〈{X̂iσ(t), X̂†

jσ(t′)}〉,
G̃a

ijσ(t − t′) = iθ(t′ − t)〈{X̂iσ(t), X̂†
jσ(t′)}〉, (4)

where 〈· · ·〉 denotes the statistical average over the Gibbs grand canonical ensemble.
The GMFA-GF solution resulting from (4) can be written in compact form in the (q, ω)-

representation,

G̃0
σ(q, ω) = χ̃

[
χ̃ω − Ãσ(q)

]−1
χ̃ , (5)

χ̃ = 〈{X̂iσ , X̂†
iσ}〉, (6)

Ãσ(q) =
∑
rij

eiq·rijÃijσ, rij = rj − ri , (7)

Ãijσ = 〈{Ẑiσ, X̂†
jσ}〉, Ẑiσ = [X̂iσ,H]. (8)

Here, ω denotes, in the complex energy plane, the value ω + iε for retarded GF, and ω − iε for
advanced GF, ε = 0+.

The spin and lattice symmetry invariance properties have evidenced the occurrence of two
kinds of particle number operators: related to singlet subband, niσ = X σ̄σ̄

i + X22
i ; niσ̄ = Xσσ

i +
X22

i , and to the hole subband, nh
iσ = Xσσ

i + X00
i , nh

iσ̄ = X σ̄σ̄
i + X00

i .
The total particle number operators at site i are Ni = niσ + niσ̄, Nh

i = nh
iσ + nh

iσ̄.
Furthermore, the following kinds of relationships have been obtained:
(i) The average occupation numbers are independent on the spin projection σ and on the

site label i,
〈niσ〉 = 〈niσ̄〉 = χ2; 〈nh

iσ〉 = 〈nh
iσ̄〉 = χ1 = 1 − χ2. (9)
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At zero doping level in hole doped cuprates, χ1 = 1, χ2 = 0, point to the fact that the hole
subband is full, while the singlet subband is empty (half-filling). Under a hole doping rate δ,
χ2 = δ, χ1 = 1 − δ, and the chemical potential is shifted towards a new equilibrium value.

(ii) The one-site singlet destruction or creation processes result in identically vanishing sta-
tistical averages, 〈X02

i 〉 = 〈X20
i 〉 = 0. As a consequence, the χ̃ matrix (6) is diagonal, with

non-vanishing matrix elements given by χ1 and χ2, Eq. (9).
(iii) The normal one-site matrix elements originating in hopping processes result in renor-

malization corrections to the energy parameters E1 and E2 of (2). The normal inband hopping
matrix element corrections are independent on the spin projection σ and result in identical con-
tributions E1 and E2. The normal interband hopping matrix elements change sign under the
spin reversal σ → σ̄. However, they result into spin-projection-independent hybridization effects
of the hole and singlet subband energy levels.

(iv) The anomalous one-site matrix elements which stem both from the interband and in-
band hopping processes vanish identically. Therefore, the static one-site pairing is absent from
the Hubbard model (2), such that the GMFA superconducting pairing cannot arise via the
minimization of the potential energy of the system.

(v) Both the normal and anomalous two-site contributions to Ãijσ stem from hopping
processes. For any pair of lattice sites (i, j), they involve identically vanishing spin-charge
correlations, 〈NiS

z
j 〉 = 〈Nh

i Sz
j 〉 = 0, Sz

j = (Xσσ
j −X σ̄σ̄

j )/2. These identities point to the spin-
charge separation of the two-site normal correlation functions, which consist [8] exclusively of
charge-charge, spin-spin and singlet-hopping terms.

(vi) The spin-independence of the singlet-charge correlations, 〈X02
i njσ〉 = 〈X02

i njσ̄〉, leads
to a single two-site anomalous matrix element, χpair

ij = νij〈X02
i Nj〉 = −νij〈Nh

j X02
i 〉. Since the

singlet carries charge and no spin, this may be assumed to point to the occurrence of a static
charge-charge correlation mechanism of superconductivity within the model (2).

4. Localized Cooper pairs
Rigorous mathematical transformations which rule out exponentially small quantities while pre-
serving all the relevant contributions to the two-site anomalous correlation functions [8], yield
for hole-doped cuprates (i �= j)

χpair
ij ≈ K21

∆
νij

∑
σ

2σ̄〈τσ2,σ̄2
1,i Nj〉, (10)

while for the electron-doped cuprates (i �= j)

χpair
ij ≈ K21

∆
νij

∑
σ

2σ〈Nh
j τ0σ̄,0σ

1,i 〉. (11)

Taking into account the expression (1) of ταβ,γη
1,i , these equations result into two-site (m = j �= i)

and three-site (m �= j �= i) contributions to the superconducting pairing. If an approximate
decoupling of the three-site terms is performed following the general rule [13] that the fermionic
components Xαβ

i Xγη
m should be separated from the bosonic components (Nj/N

h
j ), we get the

following dependence of the static superconducting pairing on the doping rate δ in hole-doped
cuprates,

χpair
ij � K21

∆
· 4νij · 2σ̄[νij(1 − δ)〈Xσ2

i X σ̄2
j 〉 + δ〈τσ2,σ̄2

1,i 〉], (12)

while in electron-doped cuprates:

χpair
ij � K21

∆
· 4νij · 2σ[νij(1 − δ)〈X0σ̄

i X0σ
j 〉 + δ〈τ0σ̄,0σ

1,i 〉]. (13)

These equations unveil a view on the static superconducting mechanism emerging from (2)
which recovers the exchange mechanism of the t-J model in terms of localized Cooper pairs.
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These pairs involve neighbouring spin states found in that energy band which crosses the Fermi
level. It is worth noting that, in the absence of the doping, the pairing comes from pure two-site
correlations, which, however, result in zero weight in the frequency matrix due to the fact that the
involved energy states are empty. With the increase of the doping, the terms originating in three-
site correlations, which are proportional to δ, become increasingly important due to the inclusion
of the whole hopping environment (i,m) around the i site where the singlet destruction/creation
occurs.
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